Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 03.
Article in English | MEDLINE | ID: covidwho-2228475

ABSTRACT

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , SARS-CoV-2 , Positive-Strand RNA Viruses , Antiviral Agents/therapeutic use , Pandemics , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/drug therapy
2.
Adv Virus Res ; 112: 1-29, 2022.
Article in English | MEDLINE | ID: covidwho-1763516

ABSTRACT

Reverse genetics is the prospective analysis of how genotype determines phenotype. In a typical experiment, a researcher alters a viral genome, then observes the phenotypic outcome. Among RNA viruses, this approach was first applied to positive-strand RNA viruses in the mid-1970s and over nearly 50 years has become a powerful and widely used approach for dissecting the mechanisms of viral replication and pathogenesis. During this time the global health importance of two virus groups, flaviviruses (genus Flavivirus, family Flaviviridae) and betacoronaviruses (genus Betacoronavirus, subfamily Orthocoronavirinae, family Coronaviridae), have dramatically increased, yet these viruses have genomes that are technically challenging to manipulate. As a result, several new techniques have been developed to overcome these challenges. Here I briefly review key historical aspects of positive-strand RNA virus reverse genetics, describe some recent reverse genetic innovations, particularly as applied to flaviviruses and coronaviruses, and discuss their benefits and limitations within the larger context of rigorous genetic analysis.


Subject(s)
Flavivirus , RNA Viruses , Flavivirus/genetics , Genome, Viral , Positive-Strand RNA Viruses , RNA Viruses/genetics , Reverse Genetics/methods , Virus Replication/genetics
3.
Nat Commun ; 13(1): 1547, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1751715

ABSTRACT

SARS-CoV-2 remdesivir resistance mutations have been generated in vitro but have not been reported in patients receiving treatment with the antiviral agent. We present a case of an immunocompromised patient with acquired B-cell deficiency who developed an indolent, protracted course of SARS-CoV-2 infection. Remdesivir therapy alleviated symptoms and produced a transient virologic response, but her course was complicated by recrudescence of high-grade viral shedding. Whole genome sequencing identified a mutation, E802D, in the nsp12 RNA-dependent RNA polymerase, which was not present in pre-treatment specimens. In vitro experiments demonstrated that the mutation conferred a ~6-fold increase in remdesivir IC50 but resulted in a fitness cost in the absence of remdesivir. Sustained clinical and virologic response was achieved after treatment with casirivimab-imdevimab. Although the fitness cost observed in vitro may limit the risk posed by E802D, this case illustrates the importance of monitoring for remdesivir resistance and the potential benefit of combinatorial therapies in immunocompromised patients with SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antibodies, Monoclonal, Humanized , Coronavirus RNA-Dependent RNA Polymerase , Female , Humans , Immunocompromised Host , Mutation , SARS-CoV-2/genetics
4.
ACS Med Chem Lett ; 12(8): 1325-1332, 2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1345534

ABSTRACT

Non-covalent inhibitors of the main protease (Mpro) of SARS-CoV-2 having a pyridinone core were previously reported with IC50 values as low as 0.018 µM for inhibition of enzymatic activity and EC50 values as low as 0.8 µM for inhibition of viral replication in Vero E6 cells. The series has now been further advanced by consideration of placement of substituted five-membered-ring heterocycles in the S4 pocket of Mpro and N-methylation of a uracil ring. Free energy perturbation calculations provided guidance on the choice of the heterocycles, and protein crystallography confirmed the desired S4 placement. Here we report inhibitors with EC50 values as low as 0.080 µM, while remdesivir yields values of 0.5-2 µM in side-by-side testing with infectious SARS-CoV-2. A key factor in the improvement is enhanced cell permeability, as reflected in PAMPA measurements. Compounds 19 and 21 are particularly promising as potential therapies for COVID-19, featuring IC50 values of 0.044-0.061 µM, EC50 values of ca. 0.1 µM, good aqueous solubility, and no cytotoxicity.

5.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: covidwho-1284758

ABSTRACT

Translation of open reading frame 1b (ORF1b) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires a programmed -1 ribosomal frameshift (-1 PRF) promoted by an RNA pseudoknot. The extent to which SARS-CoV-2 replication may be sensitive to changes in -1 PRF efficiency is currently unknown. Through an unbiased, reporter-based high-throughput compound screen, we identified merafloxacin, a fluoroquinolone antibacterial, as a -1 PRF inhibitor for SARS-CoV-2. Frameshift inhibition by merafloxacin is robust to mutations within the pseudoknot region and is similarly effective on -1 PRF of other betacoronaviruses. Consistent with the essential role of -1 PRF in viral gene expression, merafloxacin impedes SARS-CoV-2 replication in Vero E6 cells, thereby providing proof-of-principle for targeting -1 PRF as a plausible and effective antiviral strategy for SARS-CoV-2 and other coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Frameshifting, Ribosomal/drug effects , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Betacoronavirus , Chlorocebus aethiops , Fluoroquinolones/pharmacology , Frameshifting, Ribosomal/genetics , Mutation , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/physiology , Vero Cells
6.
ACS Cent Sci ; 7(3): 467-475, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1132027

ABSTRACT

Starting from our previous finding of 14 known drugs as inhibitors of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19, we have redesigned the weak hit perampanel to yield multiple noncovalent, nonpeptidic inhibitors with ca. 20 nM IC50 values in a kinetic assay. Free-energy perturbation (FEP) calculations for Mpro-ligand complexes provided valuable guidance on beneficial modifications that rapidly delivered the potent analogues. The design efforts were confirmed and augmented by determination of high-resolution X-ray crystal structures for five analogues bound to Mpro. Results of cell-based antiviral assays further demonstrated the potential of the compounds for treatment of COVID-19. In addition to the possible therapeutic significance, the work clearly demonstrates the power of computational chemistry for drug discovery, especially FEP-guided lead optimization.

7.
Cell ; 184(1): 76-91.e13, 2021 01 07.
Article in English | MEDLINE | ID: covidwho-1064906

ABSTRACT

Identification of host genes essential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may reveal novel therapeutic targets and inform our understanding of coronavirus disease 2019 (COVID-19) pathogenesis. Here we performed genome-wide CRISPR screens in Vero-E6 cells with SARS-CoV-2, Middle East respiratory syndrome CoV (MERS-CoV), bat CoV HKU5 expressing the SARS-CoV-1 spike, and vesicular stomatitis virus (VSV) expressing the SARS-CoV-2 spike. We identified known SARS-CoV-2 host factors, including the receptor ACE2 and protease Cathepsin L. We additionally discovered pro-viral genes and pathways, including HMGB1 and the SWI/SNF chromatin remodeling complex, that are SARS lineage and pan-coronavirus specific, respectively. We show that HMGB1 regulates ACE2 expression and is critical for entry of SARS-CoV-2, SARS-CoV-1, and NL63. We also show that small-molecule antagonists of identified gene products inhibited SARS-CoV-2 infection in monkey and human cells, demonstrating the conserved role of these genetic hits across species. This identifies potential therapeutic targets for SARS-CoV-2 and reveals SARS lineage-specific and pan-CoV host factors that regulate susceptibility to highly pathogenic CoVs.


Subject(s)
Coronavirus Infections/genetics , Genome-Wide Association Study , Host-Pathogen Interactions , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus/classification , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Gene Knockout Techniques , Gene Regulatory Networks , HEK293 Cells , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Host-Pathogen Interactions/drug effects , Humans , Vero Cells , Virus Internalization
8.
bioRxiv ; 2020 Oct 21.
Article in English | MEDLINE | ID: covidwho-900769

ABSTRACT

Translation of open reading frame 1b (ORF1b) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires programmed -1 ribosomal frameshifting (-1 PRF) promoted by an RNA pseudoknot. The extent to which SARS-CoV-2 replication may be sensitive to changes in -1 PRF efficiency is currently unknown. Through an unbiased, reporter-based high-throughput compound screen, we identified merafloxacin, a fluoroquinolone antibacterial, as a -1 PRF inhibitor of SARS-CoV-2. Frameshift inhibition by merafloxacin is robust to mutations within the pseudoknot region and is similarly effective on -1 PRF of other beta coronaviruses. Importantly, frameshift inhibition by merafloxacin substantially impedes SARS-CoV-2 replication in Vero E6 cells, thereby providing the proof of principle of targeting -1 PRF as an effective antiviral strategy for SARS-CoV-2.

SELECTION OF CITATIONS
SEARCH DETAIL